US009251215B2

a2z United States Patent (10) Patent No.: US 9,251,215 B2
Chen et al. (45) Date of Patent: Feb. 2, 2016
(54) DATA STAGING FOR RESULTS OF 2009/0327205 Al* 12/2009 Sweeney 706/54
ANALYTICS 2010/0036831 Al 2/2010 Vemuri et al.
2010/0169503 Al* 7/2010 Kollmansberger etal. ... 709/231
- . . 2010/0186020 Al 7/2010 Maddhirala et al.
(75) Inventors: QlII.llIlg Chen, Cupertino, CA Us); 2011/0130119 Al* 62011 Guptaetal. 455/411
Meichun Hsu, Los Altos Hills, CA (US) 2011/0179066 Al* 7/2011 Cardno et al. . 707/769
2011/0191344 Al* 82011 Jinetal. 707/739
(73) Assignee: Hewlett Packard Enterprise 2012/0030188 Al* 2/2012 Gutlapalliet al. 707/711
Development LP, Houston, TX (US) 2012/0158991 AL* 62012 Ajjaguttu etal. 709/238
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
%atselg ilssi’(‘lt)‘)’%(;e(é 19 dz(;f;med under 35 w6 W0-2008008106 A2 8/2008
OTHER PUBLICATIONS
(21) Appl. No.: 13/007,467
Arasu, et al., “The CQL Continuous Query Language: Semantic
(22) Filed: Jan. 14, 2011 Foundations and Query Execution” VLDB Journal, (15)2, Jun. 2006.
Chandrasekaran, et al., TelegraphCQ: Continuous Dataflow Process-
(65) Prior Publication Data ing for an Uncertain World. CIDR 2003.
Chen, et al., “Experience in Extending Query Engine for Continuous
US 2012/0185439 Al Jul. 19,2012 Analytics”, Proc. Dawak’ 10, 2010.
51) Int.Cl (Continued)
GO6F 17/30 (2006.01) . . .
(52) US.Cl Primary Examiner — Boris Gorney
CPC oo GOG6F 17/30516 (2013.01) Assistant Examiner — Bao Tran
(58) Field of Classification Search (74) Allorney, Ag@l’ll, or Firm — Hewlett Packard Enterprise
USPC e 707/661, 665, 667, 673, 756, 795; Development
370/351
See application file for complete search history. 67 ABSTRACT
Data staging for results of analytics according to an example
(56) References Cited method includes maintaining current results from the analyt-
ics in a first data structure, the first data structure having a
U.S. PATENT DOCUMENTS label identifying first data structure as a target for queries. The
7910625 B2* 52007 MecNuit ef al 235/385 method also includes maintaining prior results from the ana-
8.023.934 B2* 9/2011 Jeideetal. ... 455/418 lytics in at least one other data structure. The method also
2001/0007570 Al* 7/2001 Mangincocoorvnn... 370/537 includes changing the label of the first data structure after a
2003/0172368 Al : 9/2003 Alumbaugh et al. 717/106 predetermined time. The method also includes assigning the
%882;882%;& ﬁ} N ggggg g‘ouﬁ eci a{' A ;%ggg‘l‘ label to one of the other data structures, wherein the label
5007/0074258 AL* 3/2007 V\;:or;daet Zla 725105 identifies the one of the other data structures as the target for
2008/0043587 Al* 2/2008 Gandolphetal. ... 369/47.15 queries.
2009/0106521 Al* 4/2009 Whisnant etal. 711/170
2009/0182779 Al 7/2009 Johnson 13 Claims, 4 Drawing Sheets
|~ 220 200 |~ 220
Index index
154 § 110a 154
Query) QUE;<.
Engine ./ ¢ £ —— Engine
- -] TO i C -]
=)
)
T4 Te
s 1 ® N » T] 1 (Fa) ~ T;
(-7 ¢h-1) (210 ") "
T8 T2
r—‘ré Current Time ;32 i Current Time 1
e ") 2) (1) (2)
- T4 i T
S O e e e)

(n-4)

US 9,251,215 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Franklin, et al., “Continuous Analytics: Rethinking Query Process-
ing in a Network-Effect World”, CIDR 2009.

Gedik, etal., “SPADE: The Systems S Declarative Stream Processing
Engine”, ACM SIGMOD 2008.

Liarou et.al.,“Exploiting the Power of Relational Databases for Effi-
cient Stream Processing”, EDBT 2009.

SagelLogix, Inc. “Scale to Infinity”, http://www.sagelogix.com/idc/
groups/public /documents/sagelogix-whitepaper/sage016100.pdf.
Jesus Mena; “Homeland Security Techniques and Technologies”
http://books.google.co.in/books?id=poZ1 1xnOfhcC&pg=PA293
&dq=%22continuous+query.

* cited by examiner

US 9,251,215 B2

Sheet 1 of 4

Feb. 2, 2016

U.S. Patent

auBug

suibug

BpO7Y WHEIB0IJ 888qEEd

flany N vol

sonfieuy N el

e e o o o o e o o o o o o o o o o e o o e

tttttttttttttttttt awod

N0l

HOMIBN

0ci

£82in0% I

cos

caacexaasad

US 9,251,215 B2

Sheet 2 of 4

Feb. 2, 2016

U.S. Patent

{p-u)
P R
@\”5 vl (g1
cL Gi
(Z-4) {144} (o)
1 UL JUBLND
Zi ol
{1-u} ()
1 1
LL @ = I
61
(84}
1
8L
Asng
et
Xopu|
0zz ~"]

0L

gic

o
od

{{r-L1)
o RS I
{e-u) (G-u)
il 91
{u)
Yat) (o)
1 BUl} WBLND m
{14} {2-U)
&l Jd W L gl
Ll
{g-u) A
61 BATDTY
SR——
G
KBpU|
0zz "

U.S. Patent Feb. 2, 2016 Sheet 3 of 4

Fig.3 .

316

Create Query Plan

320

Cpen Info-Relation

Execute Query Plan

Rewind Plan Execution

Close Into-Relation

Close into-Relation

Check Cycle No.

Start Transaction

(Re-open Info-Reiation

330

340

350

360

Index Lookup
' For next into-Relation
1D

US 9,251,215 B2

- 375

U.S. Patent Feb. 2, 2016 Sheet 4 of 4 US 9,251,215 B2

Fig. 4

400

410 Maintain Current Results

in First Data Structure

Mainfain Prior Resuits In

420 At Least One Other Data Structure

430
Change Label Of First Data
Structure After Predetermined Time

440

Assign Label To One Of The
Other Data Structures

US 9,251,215 B2

1
DATA STAGING FOR RESULTS OF
ANALYTICS

BACKGROUND

Mobile devices, including for example mobile phones (so-
called “smart” phones), global positioning system (GPS)
devices, and even laptop/netbook computers, provide diverse
remote data capabilities. Many mobile applications are based
on so-called “cloud” services, such as location services, mes-
saging services, and so forth. Currently most cloud services
are based on statically prepared information, and do not offer
real-time analytics of dynamically captured events. For
example, a weather report or traffic report may be updated
periodically to a local news website.

Users of mobile devices, however, are coming to expect
more frequent updates of events, often in real-time. For
example, users may not just want a statically prepared traffic
report (e.g., delays on the interstate due to an earlier accident).
In addition, more real-time information is becoming readily
available (e.g., concerning the location, speed, and accident
involvement of many individual cars). Of course, to most
users the interesting and more useful information is not the
individual data (such as each car’s position and speed), but
information that has been analyzed and summarized for the
user inreal-time (e.g., the average or moving average speed of
a lane of traffic on the interstate). This information can be
derived from the individual data using various analytics.

The information is typically analyzed using a continuously
running query. The continuous query executes cycle-by-cycle
to process the data stream on a chunk-by-chunk basis. The
query commits results to the data structure on a cycle-by-
cycle basis to make the chunk-wise results visible to users.
But in the case that the information is derived from a large (or
“infinite”) number of events, the information is also infinite.
Accordingly, the data structure storing the information con-
tinues to grow and can quickly become too big to handle by
most mobile devices.

Mobile devices, such as those running WebOS and HTML
5, may download data in batch to ease the bandwidth limita-
tions. However, conventional batching involves data copying
and moving, which still incurs performance overhead and, in
the case of very large data structures, may still cause service
interruptions.

Archiving has also been used for data warehouse manage-
ment applications. In these archiving techniques, the latest
data is maintained in the table and older data is archived from
time to time. But archiving the older data also involves mov-
ing and copying the data from the table. For example, the data
may be moved from a first table holding the latest data, to
another table, so that the first table only holds the new data.
While this approach has been used for handling slowly-up-
dated data in data warehousing applications, archiving is not
efficient for supporting real-time analytics.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a high-level illustration of an exemplary net-
worked computer system which may implement data staging
for analytics.

FIG. 2 illustrates an example of data staging results of
analytics.

FIG. 3 illustrates example operations which may be used
by the query engine for continuous staging.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 is a flowchart illustrating example operations which
may be implemented for data staging for analytics.

DETAILED DESCRIPTION

The overhead associated with data move and/or copy
operations in conventional systems can be debilitating. In
addition, the service is often interrupted during the archiving
process because the table being queried is also the same table
that is being archived. Systems and methods are disclosed
herein of data staging for results of analytics, such as con-
tinuous stream analytics (CSA). The results may be staged
efficiently through metadata manipulation, without actually
moving and/or copying data, and without shutting down the
continued query that generates the results on a continuous (or
substantially continuous) basis.

In an embodiment, table-ring based data staging utilizes
small-size data structures that help to ensure low-latency data
retrieval. Maintaining the results of analytics in small sized
tables makes the results more easily accessible by mobile
applications operating in reduced bandwidth environments,
such as those running on WebOS with HTML 5 caching
capability.

In addition, the results are staged by “switching labels” of
the data structures. This approach helps to ensure the stability
of server interfaces and client interfaces (e.g., application
programming interfaces or APIs). That is, the target label or
metatag specified by database queries remains the same
regardless of which table the label has been assigned to.

FIG. 1 is a high-level illustration of an exemplary net-
worked computer system 100 which may implement data
staging for analytics. The networked computer system may
include a cloud service 105 accessed by a user 101 on a client
device 110, such as a mobile device. For purposes of illustra-
tion, the cloud service 105 may be a data processing service,
such as a real-time traffic service. Client 110 may be a mobile
phone 1104 (e.g., a smart phone), a tablet 1105, or a laptop/
netbook computer 110c. In other embodiments, however, the
client 110 may refer to any computing device. Although
described herein with reference to a mobile device, the client
110 is not limited to use with any particular type of device.

The networked computer system 100 may include one or
more communication networks 120, such as a local area net-
work (LAN) and/or wide area network (WAN). In one
example, the networks 120 include the Internet or other
mobile communications network (e.g., a 3G or 4G mobile
device network).

A host 130 may be implemented with (or as part of) the
cloud service 105 in the networked computer system 100. As
an example, host 130 may include one or more computing
systems, such as a personal computer or server computer, and
may include at least some degree of processing capability and
computer-readable storage. The host 130 is also connected to,
or able to establish a connection with, the client 110. By way
of example, the host 130 may be a server computer or a
plurality of server computers.

The host 130 may be provided on the network 120 via a
communication connection, such as via an Internet service
provider (ISP). In this regard, host 130 may be accessed by the
client 110 directly via the network 120, or via an agent, such
as a network site. In an embodiment, the agent may include a
web portal on a third-party venue (e.g., a commercial Internet
site), which facilitates a connection for one or more clients
with host 130. In another embodiment, portal icons may be
provided (e.g., on third-party venues, pre-installed on a com-
puter or mobile device, etc.) to facilitate a communications
connection between the client 110 and the host 130.

US 9,251,215 B2

3

Before continuing, it is noted that the systems and methods
described herein may be implemented with any of a wide
variety of computing devices, such as, but not limited to,
stand-alone personal desktop computers, workstations, per-
sonal digital assistants (PDAs), and appliances (e.g., devices
dedicated to providing a service), to name only a few
examples. Each of the computing devices may include
memory, storage, and a degree of data processing capability at
least sufficient to manage a communications connection
either directly with one another or indirectly (e.g., via a net-
work).

The host 130 may be implemented to receive data from at
least one source 140. The source 140 may be part of the cloud
service 105. Or the source 140 may be distributed in the
network 120. For example, the sources may gather data from
one or more sensors (e.g., traffic monitoring locations along a
road, or sensors provided with the GPS systems in vehicles).
The source 140 may also include user-generated data. An
appropriate filter may be applied, e.g., to discard “bad” data
(e.g., intentional misinformation provided by users). There is
no limit to the type or amount of data. The data may be
unprocessed or “raw,” or the data may undergo at least some
level of processing prior to delivery to the host 130.

The host 130 may execute analytics for the data to generate
results based on the data. For example, ifthe host 130 receives
traffic data including number of cars on the road, the host 130
may process the traffic data to generate a traffic report. In an
example, the analytics are executed continuously (or substan-
tially continuously) by the host 130 to generate results in
real-time (or substantially in real-time).

The host 130 may maintain the results of the analytics in at
least one data structure (e.g., a table) in computer-readable
media 135. The data structure may be accessed by the clients
110, e.g., executing a mobile application which retrieves the
results of the analytics from the host 130 and outputs the
results for the user at the client 110 (e.g., on the one mobile
phone 110q).

It is noted that the host 130 is not limited in function. The
host 130 may also provide other services to other computing
or data processing systems or devices. For example, host 130
may also provide transaction processing services, email ser-
vices, etc.

The host 130 may execute database program code 150. In
an embodiment, the database program code 150 may include
an analytics engine 152 and a query engine 154. In an
example, the analytics engine 152 may be an SQL-based
stream analytics engine, and the query engine 154 may be an
SQL query engine. The analytics engine 152 may be inte-
grated into the query engine 154.

The query engine 154 defines a unified query model over
both static relations and dynamic streaming data. Techniques
are implemented which extend the query engine 154 to sup-
port a unified model. A “cut-and-rewind” query execution
mechanism may be implemented to enable an SQL query to
be executed on a cycle-by-cycle basis for processing a data
stream on a chunk-by-chunk basis, but without shutting the
query instance down between chunks. Such an approach
enables maintaining the application context across continu-
ous execution cycles, e.g., for sliding-window oriented opera-
tions. The cycle-based transaction model, characterized by
cycle-based isolation and visibility, may be used to deliver
results of the analytics to the client 110, while the query for
generating these results is continuously (or substantially con-
tinuously) running.

The analytics engine 152 executes the analytics on data. In
an embodiment, the results are derived by a continuously
running query, rather than multiple on-and-off queries. The

10

15

20

25

30

35

40

45

50

55

60

65

4

results are derived from many (e.g., “infinite”) events and
therefore are themselves “infinite.” Therefore, the continuous
query runs cycle by cycle for processing the data stream on a
chunk-by-chunk basis, and the query commits cycle-by-cycle
to make chunk-wise results visible to users.

Because the results are “infinite,” the results may be staged
to avoid the data structure (in computer-readable media 135)
that is holding these results, from becoming too large. For
example, size of the data structure is of particular concern for
mobile devices, such as those running WebOS and HTML 5.
Staging may also enable scaling-up the analytics service to
handle even more data.

In order to support fast access to the results, a “table-ring”
mechanism may be implemented by the query engine 154.
This allows the results of substantially infinite, real-time ana-
Iytics to be maintained in a list of small-sized data structures
(e.g., tables). The data structures may be labeled based on
time sequence, and staged through “switching labels,” with-
out having to copy and/or move data, and without shutting
down or incurring performance penalties for the continued
query instance which is continuously generating those
results.

FIG. 2 illustrates an example 200 of data staging the results
from analytics. The results may be accessed by many clients
110 (e.g., mobile phone 110a shown in FIG. 2) through the
cloud service 105 (shown in FIG. 1) in real-time. In order to
support efficient data staging for a real-time analytics service,
such as cloud service 105 described above, the systems and
methods described herein implement staging through meta-
data manipulation, without having to move and/or copy data,
and without having to archive the data structure being que-
ried.

In an embodiment, the results may be formatted as time
series data. The time series data may be stored in any suitable
data structures, such as read-sharable tables T. The read-
sharable tables T are incrementally visible to the clients 110
as the results are staged in a step-by-step manner along with
their generation.

Analytics may be applied on a continuous basis, such as in
per-minute cycles (or some other time reference). Accord-
ingly, time series data may be used for expressing the results
of the analytics in a continuous manner. For purposes of
illustration, the traffic status for a particular road may be
updated every minute, for every road, for every direction, and
so forth.

The results from the analytics may be maintained in a data
structure for every hour (generated in 60 per-minute cycles),
such as a table T shown in FIG. 2. The data is maintained for
8 hours “on-line” by the cloud service 105, and can be
accessed by the clients 110 without having to access the
archive.

In the example shown in FIG. 2, nine tables (T1-T9) are
maintained, e.g., on a fast disk (or flash, memory buffer-pool,
etc.). The nine tables (T1-T9) are implemented such that at a
current time (e.g., the current hour (h) in this example), table
T1 stores the current results of the analytics and is thus the
target data structure. Table T2 stores the results of the prior
hour (h-1), and so forth. Table T9 stores the oldest results in
this example, and is thus archived asynchronously during the
current hour (h).

The metatag (or “label”) of each table T may represent a
time boundary (e.g., the hour in this example). For example,
the metatag or label for table T1 is (h), the label for table T2
is (h-1), and so forth. For data staging, the label is changed so
that the target label (h) always points to the data structure
having the current results, without moving and/or copying the

US 9,251,215 B2

5

content of the table to another table or file. This approach
avoids read and/or write overhead and archiving overhead.

When the hour changes (as illustrated by arrow 210 in FIG.
2) so that the current hour is now (h+1), the table T9 has
already finished being archived. Table T9 can be “moved up”
and used to store the current results at this new time (h+1).
Table T1 is now assigned the label corresponding to the last
hour (h-1), and so forth, in a round-robin or “table-ring”
approach.

Itis noted, however, that while the label changes (e.g., table
T9 now has the target label (h), and table T1 is now labeled
(h-1)), the tables themselves have not been changed. That is,
table T9 is still table T9 (although the contents have been
archived), and table T1 is still table T1 and includes all of the
contents that table T1 has always had.

In an embodiment, the metatags or labels (in this example,
the timestamps (h), (h-1) . . . (h-8)) may be associated with
the corresponding table. For example, an index 220 (e.g., a
data dictionary), or other suitable data structure may be used
for this association. Accordingly, if the client 110 is seeking
current data, the query engine 154 can access the appropriate
table (i.e., the target table). At the current time (h), the appro-
priate table or target table is table T1. But when the current
time changes to (h+1), the appropriate table or target table is
table T9, and so forth.

It is noted that the data staging as just described is not
limited to the example shown in FIG. 2. Any suitable number
of tables, type of data structures, time increments, and/or
archiving schedule may be implemented.

In any event, the data staging provides a stable interface for
both the client-side and server-side queries. To illustrate, the
table holding a traffic status in the current hour may be named
“current_road_condition.” This name, in either the client-side
query for retrieving the results, or the server-side query for
receiving the results, remains the same at all times. That is,
table T1 is always table T1, and table T9 is always table T9
(and so forth for all of the other tables). But the tables are
renamed or otherwise associated with the table having the
latest results (e.g., the table labeled (h)), or in this example,
the table labeled “current_road_condition,” be that table T1,
T2,...0rT9.

Such meta-data manipulation has been described herein as
“changing labels.” For example, the cloud service 105 may
make available to the clients 110 a table named “current_
road_condition.” But the cloud service 105 actually stores the
current results in the tables internally identified by T1,
T2, ...T9, for the traffic status of the current hour (h) and
(h-1),...(h-7), (h8). When a client 110 connects to the cloud
service 105 and requests the current-hour traffic status (e.g.,
using an SQL API for access to the table named “current_
road_condition”), the cloud service 105 internally converts
the table name from “current_road_condition” to “Table T9,”
if the analytics results of the current hour are stored in T9.

However, other embodiments are also contemplated and
are not limited to “changing labels.” In another example, a
system utility may change other metadata for the table having
the current results. Also for example, the name of the table
itself may be changed, or the name of the table may be
re-associated with different tables, e.g., using the index 220.

The server-side may also be enabled to support continuous
stream analytics by switching the name of the query destina-
tion while the query is still running. For purposes of illustra-
tion, a cycle-based continuous query that runs in the per-
minute (60 seconds) cycle, and persists the result in table T1
during hour 1, table T2 during hour 2, and so forth, in the
round-robin manner described above.

10

15

20

25

30

40

45

50

55

60

65

6

In an embodiment, the query may be specified as: INSERT
INTO T SELECT. However, the “into-relation” in this
expression is substituted by the actual relations T1, T2 (and so
forth), from one hour to the next hour. FIG. 3 illustrates
example operations 300, including steps 310-390, which may
be used by the query engine 154 for continuous staging (e.g.,
by switching “into-relations”). Informing the query engine
154 of the time boundary for switching the “into-relation”
name, can be accomplished, for example, by extending the
SQL, by extending the query, or using SSF registration.

For purposes of illustration, the SSF registration is utilized
in the example of FIG. 3. In this example, the hourly boundary
for table switch is turned to 60 per-minute cycles, which is
made recognizable by the query engine at run-time.

The index (e.g., data dictionary or specific system table)
maintains the metadata, such as name, 1D, etc, of the set of
actual “into-relations” as well as the order of them in the
round-robin usage. A cycle based INSERT-INTO-SELECT
query commits each cycle, through the following example
call sequence:

close_into_relation()

complete_transaction()

start_transaction()

reopen_into_relation()

Between the complete_transaction() call and the reopen_
into_relation() call, the number of execution cycles is
checked, and if the number reaches 60 (in the above example),
the switching of into-relations is executed.

For switching into-relations, the data dictionary or system
table is used for look up, and the “next” relation ID is obtained
(before the first cycle, the initial relation ID is obtained), and
is passed to the reopen_into_relation(). Thereafter, another
into-relation serves as the query destination.

Staging real-time analytics results using this approach is
particularly desirable for supporting mobile applications, due
to the latency in connecting a mobile device to a cloud server.
That is, it is often more efficient to download a batch of
information from the server for analytics purposes. HTML 5
enabled WebOS programs provide such data buffering capa-
bility (e.g., as the localStorage() function). Using the server-
side data staging approach, the tables with the latest results
remain relatively small, and thus downloading these tables is
efficient and readily managed.

In the example shown in FIG. 3, a query plan is created at
310, and then an into-relation is opened at 320. At 330, the
query plan is executed. The query plan is rewound at 340. The
into-relation is closed at 350 and 360. At 370, the cycle
number is checked, and an index lookup is consulted at 375.
The transaction starts at 380, and the into-relation is
re-opened at 390.

Before continuing, it should be noted that the embodiments
described above are provided for purposes of illustration, and
are not intended to be limiting. Other devices and/or device
configurations may be utilized to carry out the operations
described herein.

FIG. 4 is a flowchart illustrating example operations 400
which may be implemented for data staging for analytics.
Operations 400 may be embodied as machine readable
instructions on one or more computer-readable medium.
When executed on a processor, the instructions cause a gen-
eral purpose computing device to be programmed as a spe-
cial-purpose machine that implements the described opera-
tions. In an exemplary implementation, the components and
connections depicted in the figures may be used.

In operation 410, current results from the analytics are
maintained in a first data structure. The first data structure has
a label identifying first data structure as a target for queries.

US 9,251,215 B2

7

The label may represent a time boundary. In an example, the
current results for the hour (h) may be maintained in a table T1
with a label (h). In operation 420, prior results from the
analytics are maintained in at least one other data structure.
For example, the results for the prior hour (h-1) may be
maintained in a table T2 with a label (h-1), the results for 2
hours ago (h-2) may be maintained in a table T3 with a label
(h-2), and so forth.

In operation 430, the label of the first data structure may be
changed after a predetermined time. For example, at the next
hour (h+1), the first data structure T1 may be labeled (h-1).
Each of the other tables may be updated as well (e.g., T2 may
be labeled (h-2)). In operation 440, the label may be assigned
to one of the other data structures. The label now identifies
one of the other data structures (e.g., the oldest table T9) as the
target for queries. For example, the oldest table T9 may be
relabeled as (h).

The operations shown and described herein are provided to
illustrate various embodiments for data staging for analytics
(analytics). It is noted that the operations are not limited to the
ordering shown. Still other operations may also be imple-
mented.

For purposes of illustration, further operations may include
archiving results for at least one of the tables (e.g., the oldest
table T9) before changing the label of the data structure (e.g.,
from (h-8) to (h)). Archiving the other data structures may be
according to a round-robin approach. Further operations may
also include changing the other labels for each of the other
data structures by incrementing based on time.

Further operations may also include maintaining an index
with each data structure and corresponding labels for the first
data structure.

Further operations may also include providing a stable
interface for clients regardless of which of the data structures
is the target for queries.

Further operations may also include changing labels while
a query is running. For example, changing labels while a
query is running may be implemented by switching into-
relations.

It is noted that the exemplary embodiments shown and
described are provided for purposes of illustration and are not
intended to be limiting. Still other embodiments are also
contemplated.

The invention claimed is:
1. A method of data staging for results of analytics, the
method stored as machine readable instructions on a com-
puter-readable media executable by a processor, the method
comprising:
maintaining current results from the analytics in a first data
structure, the first data structure labeled with a first label
identifying the first data structure as a target for queries;

maintaining prior results from the analytics in at least one
other data structure;
changing the first label of the first data structure to a second
label after a predetermined time by incrementing based
on time, wherein the labels represent a time boundary;

assigning the first label to one of the other data structures,
wherein the first label then identifies the one of the other
data structures as the target for queries;

archiving the other data structures according to a round-

robin approach; and

8

switching into-relations for the target queries while queries
are running.
2. The method of claim 1, wherein the analytics is continu-
ous stream analytics (CSA).
5 3. The method of claim 1, further comprising archiving
results in the one of the other data structures before assigning
the label.

4. The method of claim 1, further comprising providing a
stable interface for clients regardless of which of the data
structures is the target for queries.

5. The method of claim 4, further comprising maintaining
an index with each data structure and corresponding labels for
the first data structure.

6. A system with data staging for results of analytics, com-
prising:

a first data structure for maintaining the results of the
analytics, the first data structure labeled with a target
metatag during a current time;

a plurality of other data structures operatively associated
with the first data structure;

a host device operatively associated with the first data
structure and the plurality of other data structures, the
host device changing the target metatag from the first
data structure to label one of the other data structures
with the target metatag after a predetermined time by
incrementing based on time, wherein the target metatags
represent a time boundary, the host device switching
into-relations for the target queries while queries are
running and archiving the other data structures accord-
ing to a round-robin approach.

7. The system of claim 6, wherein the client is a mobile

device.

8. The system of claim 6, wherein the host device changes
metatags for each of the other data structures after the prede-
termined time.

9. The system of claim 6, wherein an oldest data structure
is archived before the predetermined time.

10. The system of claim 9, wherein the oldest data structure
is assigned the target metatag after archiving.

11. The system of claim 6, wherein the metatags for each of
the data structures is changed by incrementing based on time.

12. A system comprising:

a cloud service with data staging, the cloud service provid-
ing results of analytics to at least one client;

a first data structure labeled with a first target label, the first
data structure operatively associated with the cloud ser-
vice for maintaining current results from the analytics
for a predetermined time;

a host device operatively associated with the first data
structure and a plurality of other data structures, the host
device changing the target label of the first data structure
to another label and labeling one of the other data struc-
tures with the target label after the predetermined time
by incrementing based on time, wherein the target label
represents a time boundary, the host device switching
into-relations for the target queries while queries are
running and archiving the other data structures accord-
ing to a round-robin approach.

13. The system of claim 12, wherein the target label pro-

vides a stable interface for clients accessing the current results
60 from a plurality of data structures at different times.

10

15

20

25

30

35

40

45

50

#* #* #* #* #*

